
PyML supplement for the Tutorial “SVMs
and kernels for computational biology”

Asa Ben-Hur

July 13, 2008

Department of Computer Science
Colorado State University

Fort Collins, CO 80521 USA

Abstract

This document steps the user through the steps of generating the results found in the tutorial SVMs and kernels for
computational biology using PyML.

Contents

1 Introduction 1

2 SVMs for Real-Valued Data 1

3 Sequence Kernels 3

1 Introduction

The objective of this supplement is to walk the user through selected parts of the code required for generating the results
found in the tutorial using PyML. The complete set of results are generated by running the script pyml_plos.py.
For convenience the commands used in this supplement are found in the file commands.py.

In what follows we assume you started your python interpreter in the pyml_plos directory, and that you have
successfully installed PyML. To use PyML you need to import it:

>>> from PyML import *

2 SVMs for Real-Valued Data

Our GC-content data is found in the file ’C_elegans_acc_gc.csv’. We read this comma-delimited file into a dataset
object that handles vector data:



>>> data = VectorDataSet(’C_elegans_acc_gc.csv’, labelsColumn = 0)

The keyword argument labelsColumn indicates to the parser that the labels (+1 or -1, indicating whether an ex-
ample represents a splice site or not) are found in the first column of the file (indexing follows standard 0-based
indexing).

For low dimensional data it is usually a good idea to standardize the data which is performed using the
Standardizer class, found in the preproc module:

>>> standardizer = preproc.Standardizer()
>>> standardizer.train(data) # perform standardization on our dataset

We will now instantiate an SVM with a soft margin constant equal to 1:

>>> s = SVM(C=1)

To perform cross-validation we use the cross-validation method of the SVM we instantiated:

>>> results = s.stratifiedCV(data, numFolds=5)

Note the use of stratified cross-validation which makes sure that each cross-validation fold contains positive examples
and negative examples in the same proportion as in the original dataset. This is important in unbalanced datasets
such as our splice-site prediction data. The number of cross-validation folds is provided by the numFolds keyword
(defaults is 5). The results object returned by the cross-validation method contains information about the accuracy of
the model:

>>> results
Confusion Matrix:

Given labels:
-1 1

-1 1675 33
1 325 167

success rate: 0.837273
balanced success rate: 0.836250
area under ROC curve: 0.914589
area under ROC 50 curve: 0.601471

More information on results objects is found in the PyML tutorial.

To use a nonlinear kernel, e.g. a polynomial kernel we simply attach it to the dataset

>>> data.attachKernel(’poly’, degree = 2)

and then perform cross-validation on the data as shown above. For a Gaussian kernel use:

>>> data.attachKernel(’gaussian’, gamma = 0.1)

Automatic selection of the SVM soft-margin constant, C and the kernel parameters (the degree of the polynomial
kernel or the width of the Gaussian kernel) can be performed automatically using PyML’s model selection module (see
the PyML tutorial for more details).

2 2 SVMs for Real-Valued Data



3 Sequence Kernels

To obtain better performance we now use kernels that directly make use of the sequences flanking the putative splice
site. Following the tutorial, we use the spectrum and weighted-degree kernels.

To use the spectrum kernel we construct a dataset that represents the spectrum of the set of sequences using the
pyml_plos.py module:

>>> import pyml_plos
>>> data = pyml_plos.gen_spectrum_data(’C_elegans_acc.fasta’, 1, 5)

This generates the spectrum of substrings of lengths 1 to 5. Infact, this method creates a spectrum
dataset that differentiates between strings that occur before or after the putative splice site, i.e. within
the preceding intron or the following exon. For generating a standard spectrum dataset use the function
PyML.containers.sequenceData.generateSpectrum. We can now apply the SVM to this dataset:

>>> s = SVM(C=1)
>>> results = s.stratifiedCV(data, numFolds=5)
>>> results
Confusion Matrix:

Given labels:
-1 1

-1 1930 55
1 70 145

success rate: 0.943182
balanced success rate: 0.845000
area under ROC curve: 0.961284
area under ROC 50 curve: 0.775882

Our next step is to use the weighted-degree kernel. We construct a dataset object from a fasta file by

>>> data = SequenceData(’C_elegans_acc.fasta’, mink = 1, maxk = 3,
maxShift=0, headerHandler = pyml_plos.process_header)

The weighted degree kernel is the one which is attached by default. We have set it to use strings of lengths between 1
and 3 with no shifts. The headerHandler keyword argument provides a function that extracts the sequence ID and
label from the header of a fasta file. The PLoS tutorial stresses the importance of normalizing your data. In the case of
the weighted degree kernel the appropriate method for normalization is the cosine-like kernel which normalizes kernel
values to be less than 1 (see text for details). In PyML this is achieved by attaching the cosine kernel to the datast:

>>> data.attachKernel(’cosine’)

Running the SVM yields a further improvement over the spectrum kernel:

3



>>> s = SVM(C=1)
>>> results = s.stratifiedCV(data, numFolds=5)
>>> results
Confusion Matrix:

Given labels:
-1 1

-1 1906 12
1 94 188

success rate: 0.951818
balanced success rate: 0.946500
area under ROC curve: 0.987943
area under ROC 50 curve: 0.916765

4 3 Sequence Kernels


	1 Introduction
	2 SVMs for Real-Valued Data
	3 Sequence Kernels

